Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Gastroenterol ; 39(1): 3-8, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504030

RESUMO

PURPOSE OF REVIEW: Although Cryptosporidium detection and typing techniques have improved dramatically in recent years, relatively little research has been conducted on point of care (POC) detection and typing tools. Therefore, the main purpose of the present review is to summarize and evaluate recent and emerging POC diagnostic methods for Cryptosporidium spp. RECENT FINDINGS: Microscopy techniques such as light-emitting diode fluorescence microscopy with auramine-phenol staining (LED-AP), still have utility for (POC) diagnostics but require fluorescent microscopes and along with immunological-based techniques, suffer from lack of specificity and sensitivity. Molecular detection and typing tools offer higher sensitivity, specificity and speciation, but are currently too expensive for routine POC diagnostics. Isothermal amplification methods such as loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA) including a commercially available LAMP kit have been developed for Cryptosporidium but are prone to false positives. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas diagnostic technologies (CRISPRDx) have recently been combined with isothermal amplification to increase its specificity and sensitivity for detection and typing. Other emerging technologies including amplification-free CRISPR detection methods are currently being developed for Cryptosporidium using a smartphone to read the results. SUMMARY: Many challenges are still exist in the development of POC diagnostics for Cryptosporidium. The ideal POC tool would be able to concentrate the pathogen prior to detection and typing, which is complicated and research in this area is still very limited. In the short-term, CRISPR-powered isothermal amplification lateral flow tools offer the best opportunity for POC Cryptosporidium species and subtype detection, with a fully integrated autonomous biosensor for the long-term goal.


Assuntos
Criptosporidiose , Cryptosporidium , Humanos , Cryptosporidium/genética , Criptosporidiose/diagnóstico , Testes Imediatos , Sistemas Automatizados de Assistência Junto ao Leito , Fenol
2.
Infect Genet Evol ; 98: 105212, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065302

RESUMO

Cryptosporidium spp. and Giardia duodenalis are important protozoan parasites which are associated with diarrheal diseases in humans and animals worldwide. Relatively little is known about the molecular epidemiology of Cryptosporidium spp. and Giardia duodenalis in the Middle East Countries and North Africa (MENA region). Therefore, this review aimed to inspect published genotyping and subtyping studies on Cryptosporidium spp. and Giardia duodenalis in the MENA region. These studies indicate that both anthroponotic and zoonotic transmission of Cryptosporidium occurs with the predominance of zoonotic transmission in most countries. Seven Cryptosporidium species were identified in humans (C. parvum, C. hominis, Cryptosporidium meleagridis, C. felis, Cryptosporidium muris, C. canis and C. bovis), with C. parvum by far being the most prevalent species (reported in 95.4% of the retrieved studies). Among C. parvum gp60 subtype families, IIa and IId predominated, suggesting potential zoonotic transmission. However, in four MENA countries (Lebanon, Israel, Egypt and Tunisia), C. hominis was the predominant species with five subtype families reported including Ia, Ib, Id, If and Ie, all of which are usually anthroponotically transmitted between humans. In animals, the majority of studies were conducted mainly on livestock and poultry, 15 species were identified (C. parvum, C. hominis, C. muris, Cryptosporidium cuniculus, C. andersoni, C. bovis, C. meleagridis, C. baileyi, C. erinacei, C. ryanae, C. felis, C. suis, Cryptosporidium galli, C. xiaoi and C. ubiquitum) with C. parvum (IIa and IId subtypes) the dominant species in livestock and C. meleagridis and C. baileyi the dominant species in poultry. With G. duodenalis, five assemblages (A, B, C, E and F) were identified in humans and six (A, B, C, E, D and F) in animals in MENA countries with assemblages A and B commonly reported in humans, and assemblages A and E dominant in livestock. This review also identified a major knowledge gap in the lack of Cryptosporidium spp. and Giardia duodenalis typing studies in water and food sources in the MENA region. Of the few studies conducted on water sources (including drinking and tap water), ten Cryptosporidium species and four genotypes were identified, highlighting the potential role of water as the major route of Cryptosporidium spp. transmission in the region. In addition, three G. duodenalis assemblages (A, B and E) were detected in different water sources with AI, AII and BIV being the main sub-assemblages reported. More research is required in order to better understand the molecular diversity and transmission dynamics of Cryptsporidum spp. and Giardia duodenalis in humans, animals, water and food sources in MENA region.


Assuntos
Criptosporidiose/epidemiologia , Cryptosporidium/genética , Giardia lamblia/genética , Giardíase/epidemiologia , África do Norte/epidemiologia , Criptosporidiose/parasitologia , Giardíase/parasitologia , Humanos , Oriente Médio/epidemiologia , Epidemiologia Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...